付丽君
bwin必赢,教授,博导
办公地址:江浦校区bwin必赢
E-mail: l.fu@njtech.edu.cn
简介:
付丽君,教授,博士生导师,国家优秀青年基金获得者,江苏省特聘教授。2004年和2010年在复旦大学获学士和博士学位,后在中科院上海硅酸盐研究所和德国马克斯普朗克固态所从事研究工作,2015年5月入职必赢。担任Elsevier《Solid State Ionics》副编委、Elsevier《Chinese Chemical Letters》(中国化学快报)青年编委。获第五届中国老员工动力电池创新竞赛优秀导师奖、IUPAC江教授新材料青年奖、张家港市奖教金、上海市优秀博士论文等奖励。
研究方向:
电化学储能;锂(离子)电池;水系锌离子电池;水锂电;钠(离子)电池
教授课程:
《金属电化学腐蚀与防护》、《锂离子电池原理及应用》
招收研究生情况:
每年硕士生3-5名,博士生1-2名。
欢迎有志成为储能领域科研和技术方面的栋梁之才,具有化学、材料、物理专业的优秀员工免试推荐或报考。
招收博士后情况:
每年招收博士后1-2名。
欢迎具有电解质、正极材料、负极材料、理论计算方向的博士加入。待遇参照必赢博士后标准,申报团队博士后考核成功后可入职必赢。
发表论文:
共发表SCI论文140余篇,总引用次数超过11000次,H因子50.
1. Inexpensive Electrolyte with Double-site Hydrogen Bonding and Regulated Zn2+ Solvation Structure for Aqueous Zn-Ion Batteries Capable of High-rate and Ultra-long Low-Temperature Operation, Energy Environmental Science, 2023.
https://doi.org/10.1039/D3EE01741A
2. Safe Aqueous Supercapacitors with Ultra-long Stable Operation at Low Temperatures, Advanced Functional Materials, 2022, 2208206.
https://doi.org/10.1002/adfm.202208206
3. Recent advances in modification strategies of silicon-based lithiumion batteries, Nano Research, 2022, 16: 3781.
https://doi.org/10.1007/s12274-022-5147-z
4. High cycle stability of Zn anodes boosted by an artificial electronic–ionic mixed conductor coating layer, Journal of Materials Chemistry A, 2022, 10: 7645.
https://doi.org/10.1039/D2TA00697A
5. Advances on Na-K liquid alloy-based batteries, J. Energy Chem., 2022, 313.
https://doi.org/10.1016/j.jechem.2022.03.027
6. An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc-Based Batteries, Advanced Science.2021,8: 21003.
https://doi.org/10.1002/advs.202100309
7. Superior potassium storage behavior of hard carbon facilitated by ether-based electrolyte, Carbon, 2021, 179: 60.
https://doi.org/10.1016/j.carbon.2021.03.058
8. A Fully Aqueous Hybrid Electrolyte Rechargeable Battery with High Voltage and High Energy Density, Advanced Energy Materials, 2020, 10(40): 2001583.
https://doi.org/10.1002/aenm.202001583
Advances in rechargeable Mg batteries, Journal of Materials Chemistry A, 2020, 8: 25601-25625.
https://doi.org/10.1039/D0TA09330K
9. Layered VSe2: A promising host for fast zinc storage and its working mechanism, Journal of Materials Chemistry A, 2020, 8: 9313-9321. https://doi.org/10.1039/D0TA01297A
10. A Facile and Scalable Synthesis of Sulfur, Selenium and Nitrogen co-doped Hard Carbon Anode for High Performance Na- and K-ion Batteries, Journal of Materials Chemistry A, 2020, 8: 14993-15001. https://doi.org/10.1039/D0TA04513F
11. Toward Heat-tolerant Potassium Batteries based on Pyrolyzed Selenium Disulfide/Polyacrylonitrile Positive Electrode and Gel Polymer Electrolyte, Journal of Materials Chemistry A, 2020, 8: 4544-4551. https://doi.org/10.1039/C9TA12422E
12. A high voltage aqueous zinc–manganese battery using a hybrid alkaline-mild electrolyte, Chemical Communications, 2020, 56: 2039-2042. https://doi.org/10.1039/C9CC08604H
13. Zinc−Carbon Paper Composites as Anodes for Zn-Ion Batteries: Key Impacts on Their Electrochemical Behaviors, Energy & Fuels, 2020, 34: 13118-13125. https://doi.org/10.1021/acs.energyfuels.0c02367
14. Layered TiS2 as a Promising Host Material for Aqueous Rechargeable Zn Ion Battery, Energy & Fuels, 2020, 34: 11590-11596. https://doi.org/10.1021/acs.energyfuels.0c02368
15. Fabricating an Aqueous Symmetric Supercapacitor with a Stable High Working Voltage of 2 V by Using an Alkaline–Acidic Electrolyte, Advanced Science, 2019, 6: 1801665.
https://doi.org/10.1002/advs.201801665
16. A Large Scalable and Low-Cost Sulfur/Nitrogen Dual Doped Hard Carbon as the Negative Electrode Material for High-Performance Potassium-Ion Batteries, Advanced Energy Materials, 2019, 9(34): 1901379. https://doi.org/10.1002/aenm.201901379
17. A High-Rate and Long-Life Aqueous Rechargeable Ammonium Zinc Hybrid Battery, ChemSusChem, 2019, 12(16): 3732-3736.
https://doi.org/10.1002/cssc.201901622
18. A Low-Cost Zn-Based Aqueous Supercapacitor with High Energy Density, ACS Applied Energy Materials, 2019, 2: 5835-5842.
https://doi.org/10.1021/acsaem.9b00981
19. Synergy of Sulfur/Polyacrylonitrile Composite and Gel Polymer Electrolyte Promises Heat-Resistant Lithium-Sulfur Batteries, iScience, 2019, 19: 316-325.
https://doi.org/10.1016/j.isci.2019.07.027
20. CoSx/C hierarchical hollow nanocages from a metal–organic framework as a positive electrode with enhancing performance for aqueous supercapacitors, RSC Advances, 2019, 9: 11253-11262.
https://doi.org/10.1039/C9RA01167F
21. An acetylene black modified gel polymer electrolyte for high-performance lithium–sulfur batteries, Journal of Materials Chemistry A, 2019, 7: 13679-13686.
https://doi.org/10.1039/C9TA03123E
22. Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds?, Journal of Materials Chemistry A, 2019, 7: 14937-14970.
https://doi.org/10.1039/C8TA10587A
23. Understanding the Behavior and Mechanism of Oxygen-Deficient Anatase TiO2 toward Sodium Storage, ACS Applied Materials & Interfaces, 2019, 11: 3061-3069.
https://doi.org/10.1021/acsami.8b19288
24. A comment on the need to distinguish between cell and electrode impedances, Journal of Solid State Electrochemistry, 2019, 23: 717-724.
https://doi.org/10.1007/s10008-018-4155-0
25. A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline–neutral electrolyte, Journal of Materials Chemistry A, 2019, 7: 4110-4118.
https://doi.org/10.1039/C8TA11735G
26. Advances of TiO2 as Negative Electrode Materials for Sodium-Ion Batteries, Advanced Materials Technology, 2018, 3: 1800004.
https://doi.org/10.1002/admt.201800004
27. Ultrathin NiCo2S4@graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors, Journal of Materials Chemistry A, 2018, 6 : 5856-5861.
https://doi.org/10.1039/C8TA00835C
28. Interfacial mass storage in nanocomposites, Solid State Ionics, 2018, 318: 54-59.
https://doi.org/10.1016/j.ssi.2017.09.008
29. Sulfur nanocomposite as a positive electrode material for rechargeable potassium-sulfur batteries, Chemical Communications, 2018, 54: 2288-2291.
https://doi.org/10.1039/C7CC09913D
30. Cubic Prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors, Electrochimica Acta, 2017, 232: 106-113.
https://doi.org/10.1016/j.electacta.2017.02.096
31. CoCO3 from one-step micro-emulsion method as electrode materials for Faradaic capacitors, Scientific Reports, 2017, 7: 2026.
https://doi.org/10.1038/s41598-017-02004-8
32. Enhancing performance of sandwich-like cobalt sulfide and carbon for quasi-solid-state hybrid electrochemical capacitors, Journal of Materials Chemistry A, 2017, 5: 8981-8988.
https://doi.org/10.1039/C7TA01500C
33. Latest advances in supercapacitors: from new electrode materials to novel device designs, Chemical Society Reviews, 2017, 46: 6816-6854.
https://doi.org/10.1039/C7CS00205J
34. Advances of Aluminum Based Energy Storage Systems, Chinese Journal of Chemistry, 2017, 35(1): 13-20.
https://doi.org/10.1002/cjoc.201600655
35. Nanostructured positive electrode materials for post-lithium ion batteries, Energy & Environmental Science, 2016, 9: 3570-3611.
https://doi.org/10.1039/C6EE02070D
36. Novel self-assembled natural graphite based composite anodes with improved kineticproperties in lithium-ion batteries, Journal of Materials Chemistry A, 2016, 4: 9865-9872.
https://doi.org/10.1039/C6TA02285E
37. Synergistic, ultrafast mass storage and removal in artificial mixed conductors, Nature, 2016, 536: 159-165.
https://doi.org/10.1038/nature19078
38. An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior, Advanced Materials, 2016, 28: 4904-4911.
https://doi.org/10.1002/adma.201505370
39. Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance, ACS Applied Materials & Interfaces, 2016 , 8: 9022-9029.
https://doi.org/10.1021/acsami.5b06142
40. A conductive polymer coated MoO3 anode enables an Al-ion capacitor with high performance, Journal of Materials Chemistry A, 2016, 4:5115-5123.
https://doi.org/10.1039/C6TA01398H
41. A Quasi-Solid-State Sodium-Ion Capacitor with High Energy Density, Advanced Materials, 2015, 27: 6962-6968.
https://doi.org/10.1002/adma.201503097
42. “Job-Sharing” Storage of Hydrogen in Ru/Li2O Nanocomposites, Nano Letters, 2015, 15: 4170-4175.
https://doi.org/10.1021/acs.nanolett.5b01320
43. Free-standing graphene-based porous carbon films with three-dimensional hierarchical architecture for advanced flexible Li–sulfur batteries, Journal of Materials Chemistry A, 2015, 3: 9438-9445.
https://doi.org/10.1039/C5TA00343A
44. Thermodynamics of Lithium Storage at Abrupt Junctions: Modeling and Experimental Evidence, Physical Review Letters, 2014, 112: 208301.
https://doi.org/10.1103/PhysRevLett.112.208301
45. Nitrogen Doped Porous Carbon Fibres as Anode Materials for Sodium Ion Batteries with Excellent Rate Performance, Nanoscale, 2014, 6(3): 1384-1389.
https://doi.org/10.1039/C3NR05374A
46. Direct evidence of a conversion mechanism in a NiSnO3 anode for lithium ion battery application, RSC Advances, 2014, 4(68): 36301-36306.
https://doi.org/10.1039/C4RA03664F
47. Free-standing Ag/C Coaxial Hybrid Electrodes as Anodes for Li-Ion Batteries, Nanoscale, 2013, 5(23): 11568-11571.
https://doi.org/10.1039/C3NR03772J
48. Hollow Carbon Nanospheres with Superior Rate Capability for Sodium-Based Batteries, Advanced Energy Materials, 2012, 2(7): 873-877.
https://doi.org/10.1002/aenm.201100691
49. Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries, Energy & Environmental Science, 2011, 4: 3985-3990.
https://doi.org/10.1039/C0EE00673D
50. Synthesis of carbon coated nanoporous microcomposite and its rate capacity for lithiumion battery, Microporous and Mesoporous Materials, 2009, 117: 515-518.
https://doi.org/10.1016/j.micromeso.2008.07.008
51. Nanostructured anode materials for Li-ion batteries, Pure and Applied Chemistry, 2008, 80(11): 2283-2295.
https://doi.org/10.1351/pac200880112283
52. Effect of Cu2O coating on graphite as anode material of lithium ion battery in PC-based electrolyte, Journal of Power Sources, 2007, 171: 904-907.
https://doi.org/10.1016/j.jpowsour.2007.05.099
53. Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries, Journal of Power Sources, 2007, 174: 1197-1200.
https://doi.org/10.1016/j.jpowsour.2007.06.030
54. Preparation and characterization of three-dimentionally ordered mesoporous titania microparticles as anode material for lithium ion battery, Electrochemistry Communications, 2007, 9(8): 2140-2144.
https://doi.org/10.1016/j.elecom.2007.06.009
55. Synthesis and electrochemical performance of novel core/shell structured nanocomposites, Electrochemistry Communications, 2006, 8: 1-4.
https://doi.org/10.1016/j.elecom.2005.10.006
56. An Aqueous rechargeable lithium battery with good cycling performance, Ange wandte Chemie - International Edition, 2006, 46: 295-297.
https://doi.org/10.1002/anie.200603699
57. Surface modification of electrode materials for lithium ion batteries, Solid State Sciences, 2006,8(2):113-128.
https://doi.org/10.1016/j.solidstatesciences.2005.10.019
58. Studies on capacity fading mechanism of graphite anode for Li-ion battery, Journal of Power Sources, 2006, 162(1): 663-666.
https://doi.org/10.1016/j.jpowsour.2006.02.108
59. Core-shell Si/C nanocomposite as anode material for lithium ion batteries, Pure and Applied Chemistry, 2006, 78(10): 1889-1896.
https://doi.org/10.1351/pac200678101889
60. Electrode materials for lithium secondary batteries prepared by sol-gel methods, Progress in Materials Science, 2005, 50: 881-928.
https://doi.org/10.1016/j.pmatsci.2005.04.002